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Observationally-constrained projections of
an ice-free Arctic even under a low emission
scenario

Yeon-Hee Kim1, Seung-Ki Min 1,2 , Nathan P. Gillett 3, Dirk Notz 4 &
Elizaveta Malinina3

The sixth assessment report of the IPCC assessed that theArctic is projected to
be on average practically ice-free in September near mid-century under
intermediate and high greenhouse gas emissions scenarios, though not under
low emissions scenarios, based on simulations from the latest generation
Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Here we
show, using an attribution analysis approach, that a dominant influence of
greenhouse gas increases on Arctic sea ice area is detectable in three obser-
vational datasets in allmonths of the year, but is on average underestimatedby
CMIP6 models. By scaling models’ sea ice response to greenhouse gases to
bestmatch the observed trend in an approach validated in an imperfectmodel
test, we project an ice-free Arctic in September under all scenarios considered.
These results emphasize the profound impacts of greenhouse gas emissions
on theArctic, and demonstrate the importance of planning for and adapting to
a seasonally ice-free Arctic in the near future.

Arctic sea ice area (SIA) has been declining rapidly throughout the year
during recent decades with a steeper decline since 2000. Based on a
model selection approach applied to CoupledModel Intercomparison
Project phase 6 (CMIP6) models, Notz et al.1 projected that the Arctic
Ocean will become sea ice-free in September for the first time before
2050, irrespective of emission scenarios. However, the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change2

assessed that “it is likely that the ArcticOcean in September, themonth
of annual minimum sea ice area, will become practically ice-free
(SIA < 1 × 106 km2) averaged over 2081–2100 and all available simula-
tions” only under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.
Hence, uncertainty remains in whether or not the Arctic will become
ice-free under the lowest emissions scenarios, as well as in under-
standing the observed Arctic SIA changes throughout the year.

Previous optimal detection and attribution studies have quanti-
fied the net human contribution to the observed Arctic sea ice
melting3–5. By comparing Arctic sea ice extent observations during

1953–2006 with CMIP3 multi-model simulations, anthropogenic
influences on the observed reduction were found to be detectable
from the early 1990s onwards3. The study also detected the anthro-
pogenic signals for individualmonths fromMay toDecember. Another
study4 compared the observed September Arctic sea ice extent from
1979 to 2012 with that from CMIP5 models and two single-model
ensembles and detected the anthropogenic signal separately from the
natural forcing (solar and volcanic) signal, which was confirmed later
using four observational data sets6. On the other hand, the cooling
contribution of anthropogenic aerosols to the observed annual Arctic
sea ice extent increase from the 1950s to the 1970swas identified using
CanESM2 simulations7. A recent study5 further detected the influences
of natural, greenhouse gas (GHG), and other anthropogenic (mainly
anthropogenic aerosol) forcing on the observed September Arctic sea
ice extent change during 1953–2012 using eight CMIP5 models and
showed that anthropogenic aerosol forcing has offset about 23%of the
GHG-induced Arctic sea ice extent decrease.
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CMIP5 models underestimate significantly the observed trend in
Arctic sea ice decline8, inducing uncertainty in future sea ice projec-
tions. In view of this, methods of constraining projections with
observations have been applied9–11. Those methods were based on the
statistical relationship between sea ice cover trends in the past and
future12, between global mean temperature and SIA9, between the
current seasonal cycle and future change in sea ice albedo feedback10,
or between historical model performance and projected future Arctic
sea ice extent11. Scaling factors (i.e., regression coefficients) between
modeled responses and observations derived from optimal detection
studies can provide a more rigorous way to constrain climate
projections13–17 when combined with an assessment of the validity of
constrained projections using an imperfect model test18, 19.

The present study conducts an updated detection and attribution
analysis of the observed Arctic SIA changes across all months over the
1979–2019 period by comparing three satellite observations with the
CMIP6 multi-model simulations. Previous attribution studies were
mostly based on sea ice extent which is defined as the total area of all
grid cells with at least 15% sea ice concentration and hence is strongly
grid dependent1. Here we use SIA which is defined as the actual area
covered with sea ice and is more appropriate for comparison with
satellite observations than sea ice extent20, having a smaller observed
uncertainty than sea ice extent21. The Arctic sea ice has beenmelting in
all months22–24 but most previous studies have focused on September
when the largest change occurred. Considering all calendar months
and utilizing individual forcing simulations, this study finds that the
response toGHG increases is detected throughout the year, explaining
most of the observed SIA reduction. Further, based on the quantified
GHG contribution to the observed Arctic SIA reduction, the future
timing of the ice-free Arctic Ocean is projected under the different
Shared Socioeconomic Pathway (SSP) emission scenarios.

Results
Observed and modeled SIA changes
Observed andmodel-simulated Arctic SIA changes are compared first.
Figure 1 displays the anomaly time series of 3-yearmeanArctic SIA and
their linear trends during the past 41 years (1979–2019) for all calendar
months from three observational data sets and CMIP6 multi-model
means (MMM) for anthropogenic plus-natural (ALL), greenhouse gas
only (GHG), aerosol only (AER), and natural only (NAT) forcings (see
Methods). Annualmean results are provided at the top for comparison
and the 5–95th percentile values of preindustrial control (CTL) runs
(gray dashed lines) are added to measure the internal variability ran-
ges. Three sets of observations (OSISAF, NASATeam, and Bootstrap;
see Methods) consistently exhibit decreasing trends throughout all
calendar months, with stronger amplitudes in warm seasons than in
cold seasons, consistent with previous studies1. Bootstrap data show
slightly stronger trends while OSISAF data have relatively weak trends
as can be seen in annual mean trends. These observed trends are
beyond the internal variability ranges for all calendar months, even in
cold months, confirming the significant year-round melting of Arctic
sea ice during recent decades.

The temporal evolution patterns of ALL simulations are overall
consistent with those observed, capturing year-round significant
melting and the strongest melting during September–October. How-
ever, decreasing trends in ALL are on average weaker than observa-
tions, particularly in the warm season (also see Fig. S2). GHG runs also
resemble the observed melting patterns but exhibit slightly weaker
trends than ALL runs, suggesting other forcing influences like tropo-
spheric ozone or reductions in aerosol emissions may slightly increase
the trends in ALL. Note that while previous studies indicate an aerosol-
driven increase in SIA since 1950, CMIP5 simulations, consistent with
the simulations shown here, show little change in SIA in response to
aerosols in the period since 19805. Indeed, GHG+ patterns (constructed
as ALL–AER–NAT, seeMethods), which reflect the combined response

to increases in all greenhouse gases including tropospheric ozone19,
show stronger sea ice melting than GHG patterns (which reflect the
response to well-mixed greenhouse gases only) in annual time series,
long-term trends, and seasonal evolutions. NAT forcing shows a slight
decrease in Arctic SIA for all calendar months, contributing to the
observed trend. This NAT-induced sea ice melting seems to be asso-
ciatedwith nomajor volcanic eruptions after Pinatubo (1991), as can be
clearly seen from the annual mean time series. Actually, Arctic SIA in
NAT has a maximum near 1995, consistent with the previous finding6

that Arctic sea ice extent peaks 5 years after volcanic eruptions. A small
increase in Arctic SIA after El Chichón eruption (1982) is noticeable as
well. AER runs exhibit negligible long-term trends inArctic SIAover the
1979–2019 period with a seasonal contrast—increasing in winter and
spring and decreasing in summer and fall. The negative Arctic SIA
trend in the warm season might be partly related to the observed
decreases in anthropogenic aerosol emissions since the 1980s7.

Attribution results
Three-signal detection analyses are conducted by regressing the
observations onto GHG+, AER, and NAT (i.e., in a three-way regression,
see Methods). Figure 2 shows results for each calendar month
obtained usingOSISAF, NASATeam, andBootstrapobservations. GHG+

signals are detected in all calendarmonths from all observations while
almost no detection occurs for AER and NAT signals. This result indi-
cates a GHG+ influence on every month’s Arctic SIA decrease, which is
separable fromAER andNAT signals. Inmost of the detected cases, the
90% range of scaling factors (regression coefficients, see Methods)
includes unity, indicating consistency in amplitude with the observed
changes. However, best estimates of the GHG+ scaling factor are gen-
erally larger than unity except for November-December, meaning that
models on average underestimate the observed Arctic SIA decrease
over the past 41 years, as shown above in Fig. 1. Consequentially, these
results clearly show that GHGs have contributed considerably to the
observed Arctic SIA decrease for all calendar months with some
underestimation by models.

To quantify the relative contribution of the three forcings to the
observed Arctic SIA changes, attributable trends are estimated from
scaled fingerprints (3-year mean SIA time series multiplied by regres-
sion coefficients) forGHG+, AER, andNAT (Fig. 3, SeeMethods). Results
show that GHG+ explains most of the observed Arctic SIA decline
across all calendarmonths and based on all observation data sets. The
NAT contribution to the Arctic SIA decrease is up to about 10% from
July to November while AER exerts a negligible influence except for
causing a slight increase from February to May. The limited contribu-
tion of anthropogenic aerosols to the observed Arctic SIA change is in
line with no overall long-term trend in AER time series during the
analysis period (Fig. 1). This might be due to the reduced aerosol
emissions over Europe and North America since the 1980s, which
could offset the cooling effect of increased aerosol emissions in
Asia25–28. Overall, GHG increases are found to be the main driver of the
observed Arctic SIA reduction throughout the year.

Some previous studies have emphasized the role of internal
variability in driving SIA trends29, 30, and have argued, based on
observations of atmospheric circulation change, that internal
variability has intensified sea ice decreases over recent decades29.
Other studies suggest that climate models underestimate multi-
decadal internal variability in extratropical temperature and
precipitation31,32. While we restrict our attention to observations and
simulations of sea ice extent itself, our optimal fingerprint analysis
accounts for the influence of internal climate variability by using
simulated internal variability from the preindustrial control simu-
lations to estimate uncertainties in regression coefficients. This
approach is in turn validated by checking the consistency of
observed and model-simulated variability using a residual con-
sistency test (see Methods). Results show that SIA for all months
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Fig. 1 | Time series of observed and simulated Arctic sea ice area (SIA) and their
linear trends. 3-year mean time series of observed and simulated Arctic SIA for
1979–2019 for a annual mean (line plot) and b–i each calendar month (shading),
and their linear trends (bars) and 5–95% ranges (gray dashed lines or error bars)
estimated from the preindustrial control (CTL) simulations. Three observations
(OBS) fromOSISAF, NASATeam, and Bootstrap are compared with Coupled Model
Intercomparison Project Phase 6 (CMIP6) multi-model simulations from historical

(ALL; anthropogenic plus natural forcing), hist-GHG (GHG; well-mixed greenhouse
gas only forcing), hist-aer (AER; anthropogenic aerosol-only forcing) and hist-nat
(NAT; natural only forcing) experiments. The residual GHG distribution (GHG+)
obtained by All–AER–NAT is displayed. SIA anomalies are obtained by computing
non-overlapping 3-year averages (2-year averages for 2018–2019) relative to the
1979–2019means. ALL runs are extended by using Shared Socioeconomic Pathway
(SSP) 2–4.5 scenario runs since 2015.
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passes the residual consistency test (Fig. 2, no marks under scaling
factors), meaning that the modeled variability is consistent with the
observed residual variability. Further, based on a comparison of
power spectra (Fig. S3), on inter-annual to decadal time scales, the
CMIP6 multi-model mean exhibits similar variability of SIA to the
observations, and the observed power spectra lie within the inter-
model range. This indicates that themodels used in this study do not
underestimate SIA variability, and hence our estimates of attribu-
table trends and their uncertainties are expected to be reliable.

Observationally-constrained future SIA
Using the scaling factors for the detected GHG+ signal, and their
associated uncertainty intervals, observationally-constrained future
projections of Arctic SIA are obtained and sea ice-free years are esti-
mated based on multi-model means for four SSP scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5). This is done for the three observa-
tional data sets separately, to assess the influence of observational
uncertainty. Figure 4a–d show results for September Arctic SIA.
Unconstrained raw projections (black lines) indicate decreases in
Arctic SIAwith different slopes depending on SSP scenarios. Except for
SSP1-2.6, Arctic SIA decreases past the ice-free threshold (1 × 106 km2)
around the 2050s–2060s in the unconstrained projections, but it does

not reach this threshold in the SSP1-2.6 scenario (also see Fig. 4e, f).
This is consistent with the full-model ensemble based projections1, 23.

The observationally-constrained projections (colored lines) exhi-
bit a faster decline of Arctic SIA than the raw time series, which can be
seen in all SSP scenarios (Fig. 4a–d). This faster retreat of Arctic sea ice
in constrained projections is due to GHG+ scaling factors larger than
unity, which reflects CMIP6 models’ underestimation of the observed
trend as discussed above. The stronger SIA declines have advanced
first ice-free years to around the 2030s–50s in all SSP scenarios.
Importantly, the earlier occurrence of an ice-free Arctic in September
becomes evident even in the SSP1-2.6 low emission scenario in all
observations (circle marks in Fig. 4e). It is also found that an ice-free
Arctic before 2100 occurs in other months (Fig. 4e–h). There are clear
differences between scenarios, e.g., with an ice-free Arctic in August to
September in SSP2-4.5 vs. June to October in SSP5-8.5, representing
more ice-free months under a higher emission scenario. Overall, our
constrained projections indicate a faster arrival of an ice-free Arctic by
around a decade, than previous studies based on CMIP5 models10, 33.

To evaluate the constrained projection approach, we conducted
an imperfect model test using pseudo observations of SIA (see Meth-
ods). Results show that the correlation coefficients between con-
strained SIA and simulated SIA for 2031–2050 ranges from0.44 to0.57

Fig. 2 | Results of three-signal (GHG+, NAT, and AER) detection. Three-way
regression (GHG+, NAT, and AER) results for the observed changes in Arctic sea ice
area (SIA) for each month for three observational data sets of a OSISAF,
bNASATeam, and c Bootstrap. The best estimates (marks) and 5–95% ranges (error

bars) of scaling factors (regression coefficients, see Methods) are displayed for
each signal. Using 3-year mean anomaly time series of Arctic SIA (see Fig. 1),
observations are regressed simultaneously onto multi-model-simulated responses
(fingerprints) to three signals of GHG+, NAT, and AER forcing (see Methods).
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across four SSP scenarios, all of which are statistically significant
(Fig. S4). Also, root mean square errors (RMSEs) from constrained
projections are reduced (0.71–0.88× 106 km2) compared to the
unconstrained cases (0.95–1.39 × 106 km2). These high correlations and
reduction in RMSE indicate good predictability for GHG-constrained
SIA irrespective of future emission scenarios.

Discussion
This study conducts an attribution analysis of the observed Arctic SIA
decrease for all calendar months for the past 41 years (1979–2019).We
compare Arctic SIA from three observational data sets with those from
CMIP6 multi-model simulations under different external forcings
using an optimal fingerprinting technique. All three observational data
sets show a significant Arctic SIA reduction for all calendar months,
which is beyond the range of internal variability ranges, with the
strongest trends in the summermonths. The ALL andGHG simulations
successfully reproduce the observed seasonal pattern of trends in
Arctic SIA althoughmagnitudes are underestimated, particularly in the
warm season. The NAT simulations exhibit slight decreasing Arctic
SIAs due to nomajor volcanic eruptions after Pinatubo (1991), whereas
the AER runs show almost no trends in Arctic SIA with a contrasting
seasonal pattern.

An optimal detection analysis based on a three-way regression is
conducted by regressing observations onto the ALL, AER, and NAT
fingerprints simultaneously. Results show that GHG+ influences (esti-
mated as ALL–AER–NAT) are detected separately from the responses
to AER andNAT forcings for all calendarmonths fromall observations.
An analysis of attributable changes indicates thatmost of the observed
Arctic SIA reduction is explained by GHG+ forcing with much weaker
contributions from AER and NAT. Based on the GHG+ scaling factors,
we produce observationally-constrained future changes in Arctic SIA
under four SSP scenarios. Results indicate that the first sea ice-free
September will occur as early as the 2030s–2050s irrespective of
emission scenarios. Extended occurrences of an ice-free Arctic in the
early summer months are projected later in the century under higher
emissions scenarios.

This study demonstrates that GHG forcing has dominated the
observed Arctic SIA reduction across all months, and shows that the
GHG influence is separable from that of other factors including
anthropogenic aerosols, solar and volcanic forcing, as well as natural
internal variability. This result builds on previous CMIP3 and CMIP5-
based findings3–5 and demonstrates an expanded human influence on
the Arctic cryosphere. Our observationally-constrained projections
based on attribution results also suggest that we may experience an
unprecedented ice-free Arctic climate in the next decade or two,
irrespective of emission scenarios. This would affect human society
and the ecosystem both within and outside the Arctic, through chan-
ging Arctic marine activities34 as well as further accelerating the Arctic
warming and thereby altering Arctic carbon cycling35, 36.

Methods
Observations
As observations, we use three different satellite data sets of sea ice
concentration (SIC) derived from OSISAF37, NASATeam38, and
Bootstrap39 algorithms for eachmonth from 1979 to 2019. Arctic SIA is
calculated as the area sum of grid cells weighted by SIC over the
Northern Hemisphere (NH).

CMIP6 simulations
We use multi-model CMIP6 historical and DAMIP simulations40, 41 per-
formed under different climate forcing combinations, including his-
torical (anthropogenic plus natural forcing, referred to as ALL), hist-
GHG (well-mixed greenhouse gas only forcing; GHG), hist-aer
(anthropogenic aerosol-only forcing; AER) and hist-nat (natural only
forcing; NAT) for the 41-year period 1979 to 2019. For ALL, historical
simulations for 1979–2014 are concatenated with the corresponding
Shared Socioeconomic Pathway (SSP)42 2–4.5 scenario simulations for
2015–2019. We also use preindustrial control simulations (CTL) from
38 models which provide 516 41-year non-overlapping chunks for
estimating internal climate variability (see below). For future projec-
tions of Arctic SIA, we use four SSP scenario simulations (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5) from the same models for

Fig. 3 | Attributable trends. Attributable trends (color bars) in Arctic sea ice are
(SIA) for eachmonth during 1979–2019 to GHG+, AER, and NAT forcings compared
with the observed trends (OBS, black bars) from a OSISAF, b NASATeam, and
c Bootstrap. Attributable trends (see Methods) are obtained based on scaling

factors from the three-signal analysis shown in Fig. 2 by multiplying each signal’s
fingerprint (3-year mean SIA anomaly time series) by the corresponding scaling
factors (best estimates). The error bars indicate the 5–95% intervals of attributable
trends calculated using the 5–95% ranges of scaling factors.
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2020–2100. Following ref. 1, modeled Arctic SIA is obtained by mul-
tiplying SIC on the ocean grid with the individual grid-cell area and
taking its sum over the NH.

We use 10CMIP6modelswhich provide all experiments including
ALL, GHG,AER, andNATover the 1979–2019 period. Thesemodels can
simulate SIA seasonal cycle similar to the observed (Fig. S1). To reduce
possible influences of different models, we use the same multi-model
ensemble to estimate ‘fingerprints’, i.e., model’s response patterns to
external forcings (10 models and 60 runs, Table S1). We use an equal
number of ensemble members for each forcing for eachmodel. When
comparing themulti-modelmean (MMM) from the 10 selectedmodels
with that from the 25 models, SIA seasonal cycle and its trends in
September and March are found to be very similar (Figs. S1 and S2),
indicating that the selected models represent full available models
reasonably well. Individual model means are first calculated using all
ensemble members and then the MMM is obtained by taking averages
of individual model means. In order to reduce noise on inter-annual
time scales, we use 3-year mean (2-year mean for 2018–2019) non-
overlapping time series of Arctic SIA during 1979–2019 for
each month.

Optimal fingerprinting analysis
To compare the observed Arctic SIA changes with those from CMIP6
forced simulations, we employ the total least squares (TLS)-based
optimal fingerprinting method43, referred to as regularized optimal
fingerprinting (ROF44), which provides an improved estimate of the
covariance matrix of internal variability. We carry out a three-signal
analysis (i.e., three-way regression) to detect the influence of each
signal separately. Observations (OBS) are regressed onto ALL, AER and

NAT fingerprints simultaneously: OBS = β1XALL + β2XAER + β3XNAT + ε.
The fingerprint X is obtained as 3-year mean time series of the multi-
model mean SIA anomaly for the period 1979–2019 for each external
forcing (ALL, AER and NAT). Here β is the scaling factor (or regression
coefficient) for a given external forcing and estimated based on the
TLS method. ε represents the internal climate variability estimated
from CTL simulations. Scaling factors for GHG+, AER and NAT are
obtained by decomposing ALL as ALL =GHG+ + AER +NAT, where
GHG+ includes land use change, as well as ozone and well-mixed GHG
changes, and substituting as follows: OBS = β1XGHG

+ + (β1 + β2)
XAER + (β1 + β3)XNAT + ε. The scaling factors for GHG+, AER and NAT can
hence be written as βGHG

+ = β1, βAER = β1 + β2, βNAT = β1 + β3. Two sets of
CTL simulations are used (with 258 CTL segments in each, Table S1).
The first set is used to estimate covariancematrix of internal variability
and hence the best estimate of β, and the second set is utilized to
estimate confidence interval (5–95%) and also to carry out a residual
consistency test44. The observed residual (OBSres) is obtained by
removing the forcing-explained portion from observations based on
the optimal regression, i.e., OBSres =OBS – (β1XALL + β2XAER + β3XNAT).
Then the variance in residual observations is compared with that in
the unforced CTL simulations, using an F-test. When the test is failed
due to too small modeled variability, detection results become less
robust.

If confidence intervals on β lie above zero, this indicates signal
‘detection’ (i.e., the observed change is influenced by external forcing).
If confidence intervals on β include unity, an ‘attribution’ statement
can be made that the observed changes are consistent with the
simulated response to the external forcing45. Attributable trends in
Arctic SIA to each forcing are estimated bymultiplying GHG+, AER and
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Fig. 4 | Observationally-constrained future projection. Time series of Arctic sea
ice area (SIA) in September over the period 1979–2100 from three sets of obser-
vations (OSISAF, NASATeam, and Bootstrap) and Coupled Model Intercomparison
Project Phase 6 (CMIP6) multi-model means of the a Shared Socioeconomic
Pathway (SSP) 1–2.6, b SSP2-4.5, c SSP3-7.0, and d SSP5-8.5 scenario simulations.
Colored lines indicate observations for the historical period (1979–2019) and
observationally-constrained projections for the future period (2020–2100) which
are obtained by scaling raw projections (black lines) with GHG scaling factors (see

Fig. 2). Colored shading indicates the uncertainty ranges (5–95%) of
observationally-constrained projections (based on 5–95% ranges of GHG+ scaling
factors). e–hCMIP6 projected sea ice-free years (defined as the year whenmonthly
meanmulti-modelmean SIA drops below 1 × 106 km2 for the first time) for different
SSP scenarios.Marks and vertical dashed lines indicate the best estimate and 5–95%
ranges, respectively, of constrainedprojection results based onGHGscaling factors
for three observations. Horizontal lines indicate results from unconstrained
projections.
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NAT fingerprints by the corresponding scaling factors obtained from
the three-signal analysis, and their associated uncertainties.

Observationally-constrained projections
These scaling factors are further used to produce observationally-
constrained future projections of Arctic SIA for four SSP scenarios
(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We first obtain multi-
modelmean time series of SIA anomalies during 2020–2100 relative to
the 1979–2019mean ofmulti-modelmean ALL. Themulti-modelmean
projections of SIA anomalies are weighted by scaling factors of GHG+

(based on three-signal analysis). Then, the 1979–2019 multi-model
mean climatology is added to the constrained SIA anomaly time series
to get the constrained projections of SIA. Finally, sea ice-free year is
defined in the raw and constrained projections as the first year when
Arctic SIA becomes less than 1 × 106 km2 following ref. 1. To evaluate
this constraining approach, we adapt an imperfect model
framework18, 19. We treat a single ensemblemember from the set of ALL
simulations (60 runs) as pseudo observations and use the other 9
models to estimatemulti-modelmeanfingerprints (forGHG+, AER, and
NAT) and carry out anoptimalfingerprinting analysis using the pseudo
observations. If the GHG+ signal is detected, we constrain the future
projections from the 9models using the scaling factor ofGHG+. Finally,
we compare the constrained SIA with the future simulated SIA
obtained from the pseudo-observation ensemble for 2031–2050when
most models simulate ice-free years in September. This procedure is
repeated 60 times using each member of ALL simulations.

Data availability
All the raw CMIP6 model simulation data are publicly available at
https://esgf-node.llnl.gov/projects/cmip6/. The observed SIA is avail-
able at https://doi.org/10.25592/uhhfdm.8559.

Code availability
The code for optimal fingerprinting analysis is available at https://
github.com/ESMValGroup/ESMValTool/blob/gillett20/esmvaltool/
diag_scripts/attribute/.
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